Hamiltonian simulation for hyperbolic partial differential equations by scalable quantum circuits

Author:

Sato Yuki12ORCID,Kondo Ruho12ORCID,Hamamura Ikko3,Onodera Tamiya23ORCID,Yamamoto Naoki22ORCID

Affiliation:

1. Toyota Central R&D Labs.

2. Keio University

3. IBM Research–Tokyo

Abstract

Solving partial differential equations for extremely large-scale systems within a feasible computation time serves in accelerating engineering developments. Quantum computing algorithms, particularly the Hamiltonian simulations, present a potential and promising approach to achieve this purpose. Actually, there are several oracle-based Hamiltonian simulations with potential quantum speedup, but their detailed implementations and accordingly the detailed computational complexities are all unclear. This paper presents a method that enables us to explicitly implement the quantum circuit for Hamiltonian simulation; the key technique is the explicit gate construction of differential operators contained in the target partial differential equation discretized by the finite difference method. Moreover, we show that the space and time complexities of the constructed circuit are exponentially smaller than those of conventional classical algorithms. We also provide numerical experiments and an experiment on a real device for the wave equation to demonstrate the validity of our proposed method. Published by the American Physical Society 2024

Funder

Ministry of Education, Culture, Sports, Science and Technology

Japan Society for the Promotion of Science

Publisher

American Physical Society (APS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3