Parametrically enhancing sensor sensitivity at an exceptional point

Author:

Djorwé P.12ORCID,Asjad M.34ORCID,Pennec Y.56ORCID,Dutykh D.37ORCID,Djafari-Rouhani B.56ORCID

Affiliation:

1. University of Ngaoundere

2. Stellenbosch Institute for Advanced Study (STIAS)

3. Khalifa University

4. Simon Fraser University

5. Institut d'Electronique, de Microélectronique et Nanotechnologie

6. Université de Lille

7. Causal Dynamics Pty Ltd

Abstract

We propose a scheme to enhance the sensitivity of non-Hermitian optomechanical mass sensors. The benchmark system consists of two coupled optomechanical systems where the mechanical resonators are mechanically coupled. The optical cavities are driven either by a blue-detuned or red-detuned laser to produce gain and loss, respectively. Moreover, the mechanical resonators are parametrically driven through the modulation of their spring constant. For a specific strength of the optical driving field and without parametric driving, the system features an exceptional point (EP). Any perturbation to the mechanical frequency (dissipation) induces a splitting (shifting) of the EP, which scales as the square root of the perturbation strength, resulting in a sensitivity-factor enhancement compared with conventional optomechanical sensors. The sensitivity enhancement induced by the shifting scenario is weak as compared to the one based on the splitting phenomenon. By switching on parametric driving, the sensitivity of both sensing schemes is greatly improved, yielding to a better performance of the sensor. We have also confirmed these results through an analysis of the output spectra and the transmissions of the optical cavities. In addition to enhancing EP sensitivity, our scheme also reveals nonlinear effects on sensing under splitting and shifting scenarios. This work sheds light on mechanisms of enhancing the sensitivity of non-Hermitian mass sensors, paving a way to improve sensors performance for better nanoparticles or pollutants detection and for water treatment. Published by the American Physical Society 2024

Funder

Khalifa University of Science, Technology and Research

Publisher

American Physical Society (APS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3