Relaxation and fluctuations of a mass- and dipole-conserving stochastic lattice gas

Author:

Meerson Baruch1ORCID

Affiliation:

1. Hebrew University of Jerusalem

Abstract

Han [] have recently introduced a classical stochastic lattice gas model which, in addition to particle conservation, also conserves the particles' dipole moment. Because of its intrinsic nonlinearity this model exhibits unusual macroscopic scaling behaviors, different from those of lattice gases that conserve only the number of particles. Here we investigate some basic relaxation and fluctuation properties of this model at large scales and at long times. These properties crucially depend on whether the total number of particles is infinite or finite. We find similarity solutions, describing relaxation of the dipole-conserving gas (DCG) in several standard settings. A major part of our effort is an extension to this model of the macroscopic fluctuation theory (MFT), previously developed for lattice gases where only the number of particles is conserved. We apply the MFT to the calculation of the variance of nonequilibrium fluctuations of the excess number of particles on the positive semi-axis when starting from an (either deterministic, or random) constant density at t=0. Using the MFT, we also identify the equilibrium Boltzmann-Gibbs distribution for the DCG. Finally, based on these results, we determine the probability distribution of, and the most probable density history leading to, a large deviation in the form of a macroscopic void of a given size in an initially uniform DCG at equilibrium. Published by the American Physical Society 2024

Funder

Israel Science Foundation

Publisher

American Physical Society (APS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3