Adaptive strategy optimization in game-theoretic paradigm using reinforcement learning

Author:

Cheong Kang Hao11ORCID,Zhao Jie12

Affiliation:

1. Nanyang Technological University

2. Singapore University of Technology and Design

Abstract

Parrondo's paradox refers to the counterintuitive phenomenon whereby two losing strategies, when alternated in a certain manner, can result in a winning outcome. Understanding the optimal sequence in Parrondo's games is of significant importance for maximizing profits in various contexts. However, the current predefined sequences may not adapt well to changing environments, limiting their potential for achieving the best performance. We posit that the optimal strategy that determines which game to play should be learnable through experience. In this Letter, we propose an efficient and robust approach that leverages Q learning to adaptively learn the optimal sequence in Parrondo's games. Through extensive simulations of coin-tossing games, we demonstrate that the learned switching strategy in Parrondo's games outperforms other predefined sequences in terms of profit. Furthermore, the experimental results show that our proposed method can be easily adjusted to adapt to different cases of capital-dependent games and history-dependent games. Published by the American Physical Society 2024

Funder

Ministry of Education - Singapore

Publisher

American Physical Society (APS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3