Arbitrary relaxation rate under non-Hermitian matrix iterations

Author:

Bensa Jaš1ORCID

Affiliation:

1. University of Ljubljana

Abstract

We study the exponential relaxation of observables propagated with a non-Hermitian transfer matrix, an example being out-of-time-ordered correlations (OTOC) in brick-wall (BW) random quantum circuits. Until a time that scales as the system size, the exponential decay of observables is not usually determined by the second largest eigenvalue of the transfer matrix, as one can naively expect, but it is, in general, slower—this slower decay rate was dubbed “phantom eigenvalue.” Generally, this slower decay is given by the largest value in the pseudospectrum of the transfer matrix; however, we show that the decay rate can be an arbitrary value between the second largest eigenvalue and the largest value in the pseudospectrum. This arbitrary decay can be observed, for example, in the propagation of OTOC in periodic boundary conditions BW circuits. To explore this phenomenon, we study a matrix iteration made from a simple tridiagonal Toeplitz matrix. This setting can be used to propagate OTOC in random circuits with open boundary conditions and to describe a one-dimensional biased random walk with dissipation at the edges. Published by the American Physical Society 2024

Funder

Javna Agencija za Raziskovalno Dejavnost RS

Publisher

American Physical Society (APS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3