Comparing parameter-reduction methods on a biophysical model of an auditory hair cell

Author:

Marcinik Joseph M.1,Toderi Martín A.1ORCID,Bozovic Dolores11

Affiliation:

1. University of California, Los Angeles

Abstract

Biophysical models describing complex cellular phenomena typically include systems of nonlinear differential equations with many free parameters. While experimental measurements can fix some parameters, those describing internal cellular processes frequently remain inaccessible. Hence, a proliferation of free parameters risks overfitting the data, limiting the model's predictive power. In this study, we develop systematic methods, applying statistical analysis and dynamical-systems theory, to reduce parameter count in a biophysical model. We demonstrate our techniques on a five-variable computational model designed to describe active, mechanical motility of auditory hair cells. Specifically, we use two statistical measures, the total-effect and PAWN indices, to rank each free parameter by its influence on selected, core properties of the model. With the resulting ranking, we fix most of the less influential parameters, yielding a five-parameter model with refined predictive power. We validate the theoretical model with experimental recordings of active hair-bundle motility, specifically by using Akaike and Bayesian information criteria after obtaining maximum-likelihood fits. As a result, we determine the system's most influential parameters, which illuminate the key biophysical elements of the cell's overall features. Even though we demonstrate with a concrete example, our techniques provide a general framework, applicable to other biophysical systems. Published by the American Physical Society 2024

Funder

Army Research Office

National Science Foundation

Publisher

American Physical Society (APS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3