Nonadiabatic nonlinear non-Hermitian quantized pumping

Author:

Ezawa Motohiko1ORCID,Ishida Natsuko1ORCID,Ota Yasutomo2ORCID,Iwamoto Satoshi1ORCID

Affiliation:

1. The University of Tokyo

2. Keio University

Abstract

We analyze a quantized pumping in a nonlinear non-Hermitian photonic system with nonadiabatic driving. The photonic system is made of a waveguide array, where the distances between adjacent waveguides are modulated. It is described by the Su-Schrieffer-Heeger model together with a saturated nonlinear gain term and a linear loss term. A topological interface state between the topological and the trivial phases is stabilized by the combination of a saturated nonlinear gain term and a linear loss term. We study the pumping of the topological interface state. We define the transfer-speed ratio ω/Ω by the ratio of the pumping speed ω of the center of mass of the wave packet to the driving speed Ω of the topological interface. It is quantized topologically as ω/Ω=1 in the adiabatic limit. It remains to be quantized dynamically unless the driving is not too fast even in the nonadiabatic regime. On the other hand, the wave packet collapses and there is no quantized pumping when the driving is too fast. In addition, the stability against disorder is more enhanced by stronger nonlinearity. Published by the American Physical Society 2024

Funder

Core Research for Evolutional Science and Technology

Japan Science and Technology Corporation

Japan Society for the Promotion of Science

Publisher

American Physical Society (APS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3