Maximum power of coupled-qubit Otto engines

Author:

Gao Jingyi1ORCID,Hatano Naomichi2ORCID

Affiliation:

1. Department of Physics, the University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8574, Japan

2. Institute of Industrial Science, the University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8574, Japan

Abstract

We put forward four schemes of a coupled-qubit quantum Otto machine, a generalization of the single-qubit quantum Otto machine, based on work and heat transfer between an internal system consisting of a coupled pair of qubits and an external environment consisting of two heat baths and two work storages. The four schemes of our model are defined by the positions of attaching the heat baths, which play a key role in the power of the coupled-qubit engine. First, for the single-qubit heat engine, we find a maximum-power relation, and the fact that its efficiency at the maximum power is equal to the Otto efficiency, which is greater than the Curzon-Ahlborn efficiency. Second, we compare the coupled-qubit engines to the single-qubit engine from the point of view of achieving the maximum power based on the same energy-level change for work production and find that the coupling between the two qubits can lead to greater powers but the system efficiency at the maximum power is lower than the single-qubit system's efficiency and the Curzon-Ahlborn efficiency. Published by the American Physical Society 2024

Funder

Japan Society for the Promotion of Science

Publisher

American Physical Society (APS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3