Influence of catastrophes and hidden dynamical symmetries on ultrafast backscattered photoelectrons

Author:

Rook T.1ORCID,Rodriguez L. Cruz1ORCID,Faria C. Figueira de Morisson1ORCID

Affiliation:

1. University College London

Abstract

We discuss the effect of using potentials with a Coulomb tail and different degrees of softening in photoelectron momentum distributions (PMDs) using the recently implemented hybrid forward-boundary CQSFA (H-CQSFA). We show that introducing a softening in the Coulomb interaction influences the ridges observed in the PMDs associated with backscattered electron trajectories. In the limit of a hard-core Coulomb interaction, the rescattering ridges close along the polarization axis, while for a soft-core potential, they are interrupted at ridge-specific angles. We analyze the momentum mapping of the different orbits leading to the ridges. For the hard-core potential, there exist two types of saddle-point solutions that coalesce at the ridge. By increasing the softening, we show that two additional solutions emerge as the result of breaking a hidden dynamical symmetry associated exclusively with the Coulomb potential. Further signatures of this symmetry breaking are encountered in subsets of momentum-space trajectories. Finally, we use scattering theory to show how the softening affects the maximal scattering angle and provide estimates that agree with our observations from the CQSFA. This implies that, in the presence of residual binding potentials in the electron's continuum propagation, the distinction between purely kinematic and dynamic caustics becomes blurred. Published by the American Physical Society 2024

Funder

Engineering and Physical Sciences Research Council

Publisher

American Physical Society (APS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3