Interaction-enhanced nesting in spin-fermion and Fermi-Hubbard models

Author:

Rossi R.123ORCID,IV F. Šimkovic45ORCID,Ferrero M.45ORCID,Georges A.6547ORCID,Tsvelik A. M.8ORCID,Prokof'ev N. V.9ORCID,Tupitsyn I. S.9ORCID

Affiliation:

1. Sorbonne Université

2. Laboratoire de Physique Théorique de la Matière Condensée

3. École Polytechnique Fédérale de Lausanne (EPFL)

4. Ecole Polytechnique

5. College de France

6. Flatiron Institute

7. Université de Genève

8. Brookhaven National Laboratory

9. University of Massachusetts, Amherst

Abstract

The spin-fermion (SF) model postulates that the dominant coupling between low-energy fermions in near critical metals is mediated by collective spin fluctuations (paramagnons) peaked at the Néel wave vector, QN, connecting hot spots on opposite sides of the Fermi surface. It has been argued that strong correlations at hot spots lead to a Fermi surface deformation (FSD) featuring flat regions and increased nesting. This conjecture was confirmed in the perturbative self-consistent calculations when the paramagnon propagator dependence on momentum deviation from QN is given by χ1|Δq|. Using diagrammatic Monte Carlo (diagMC) technique we show that such a dependence holds only at temperatures orders of magnitude smaller than any other energy scale in the problem, indicating that a different mechanism may be at play. Instead, we find that a χ1|Δq|2 dependence yields a robust finite-T scenario for achieving FSD. To link phenomenological and microscopic descriptions, we applied the connected determinant diagMC method to the (tt) Hubbard model and found that at large U/t>5.5 before the formation of electron and hole pockets (i) the FSD defined as a maximum of the spectral function is not very pronounced; instead, it is the lines of zeros of the renormalized dispersion relation that deforms toward nesting, and (ii) the static spin susceptibility is well described by χ1|Δq|2. Flat FS regions yield a nontrivial scenario for realizing a non-Fermi liquid state. Published by the American Physical Society 2024

Funder

U.S. Department of Energy

Office of Science

Simons Foundation

Publisher

American Physical Society (APS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3