Waddington landscape for prototype learning in generalized Hopfield networks

Author:

Boukacem Nacer Eddine12,Leary Allen23,Thériault Robin24ORCID,Gottlieb Felix2ORCID,Mani Madhav55,François Paul16ORCID

Affiliation:

1. Université de Montréal

2. McGill University

3. Regeneron

4. Scuola Normale Superiore di Pisa

5. Northwestern University

6. MILA Québec

Abstract

Networks in machine learning offer examples of complex high-dimensional dynamical systems inspired by and reminiscent of biological systems. Here, we study the learning dynamics of generalized Hopfield networks, which permit visualization of internal memories. These networks have been shown to proceed through a “feature-to-prototype” transition, as the strength of network nonlinearity is increased, wherein the learned, or terminal, states of internal memories transition from mixed to pure states. Focusing on the prototype learning dynamics of the internal memories, we observe stereotypical dynamics of memories wherein similar subgroups of memories sequentially split at well-defined saddles. The splitting order is interpretable and reproducible from one simulation to the other. The dynamics prior to splits are robust to variations in many features of the system. To develop a more rigorous understanding of these global dynamics, we study smaller subsystems that exhibit similar properties to the full system. Within these smaller systems, we combine analytical calculations with numerical simulations to study the dynamics of the feature-to-prototype transition, and the emergence of saddle points in the learning landscape. We exhibit regimes where saddles appear and disappear through saddle-node bifurcations, qualitatively changing the distribution of learned memories as the strength of the nonlinearity is varied—allowing us to systematically investigate the mechanisms that underlie the emergence of the learning dynamics. Several features of the learning dynamics are reminiscent of the Waddington's caricature of cellular differentiation, and we attempt to make this analogy more precise. Memories can thus differentiate in a predictive and controlled way, revealing bridges between experimental biology, dynamical systems theory, and machine learning. Published by the American Physical Society 2024

Funder

Natural Sciences and Engineering Research Council of Canada

Canadian Institutes of Health Research

National Science Foundation

Northwestern University

Simons Foundation

Chan Zuckerberg Initiative

Silicon Valley Community Foundation

Publisher

American Physical Society (APS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3