Multipole and fracton topological order via gauging foliated symmetry protected topological phases

Author:

Ebisu Hiromi1ORCID,Honda Masazumi2,Nakanishi Taiichi21ORCID

Affiliation:

1. Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan

2. Interdisciplinary Theoretical and Mathematical Sciences Program (iTHEMS), Wako 351-0198, Japan

Abstract

Spurred by the recent development of fracton topological phases, unusual topological phases possessing fractionalized quasiparticles with mobility constraints, the concept of symmetries has been renewed. In particular, in accordance with the progress of multipole symmetries, associated with conservation of multipoles, such as dipole or quadruple moments as well as global charges, there have been proposed topological phases with such symmetries. These topological phases are unconventional because excitations are subject to mobility constraints corresponding to the multipole symmetries. We demonstrate a way to construct such phases by preparing layers of symmetry protected topological (SPT) phases and implementing gauging a global symmetry. After gauging, the statistics of a fractional excitation is altered when crossing the SPT phases, resulting in topological phases with the multipole symmetries. The way we construct the phases allows us to have a comprehensive understanding of field theories of topological phases with the multipole symmetries and other fracton models. Published by the American Physical Society 2024

Funder

Japan Society for the Promotion of Science

Japan Science and Technology Agency

RIKEN

Publisher

American Physical Society (APS)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3