Kilonova light-curve interpolation with neural networks

Author:

Peng Yinglei1ORCID,Ristić Marko2ORCID,Kedia Atul2,O'Shaughnessy Richard2,Fontes Christopher J.33ORCID,Fryer Chris L.33456ORCID,Korobkin Oleg33,Mumpower Matthew R.33,Villar V. Ashley7,Wollaeger Ryan T.33

Affiliation:

1. University of Rochester

2. Rochester Institute of Technology

3. Los Alamos National Laboratory

4. University of Arizona

5. University of New Mexico

6. George Washington University

7. Center for Astrophysics | Harvard & Smithsonian

Abstract

Kilonovae are the electromagnetic transients created by the radioactive decay of freshly synthesized elements in the environment surrounding a neutron star merger. To study the fundamental physics in these complex environments, kilonova modeling requires, in part, the use of radiative transfer simulations. The microphysics involved in these simulations results in high computational cost, prompting the use of emulators for parameter inference applications. Utilizing a training set of 22 248 high-fidelity simulations (composed of 412 unique ejecta parameter combinations evaluated at 54 viewing angles), we use a neural network to efficiently train on existing radiative transfer simulations and predict light curves for new parameters in a fast and computationally efficient manner. Our neural network can generate millions of new light curves in under a minute. We discuss our emulator's degree of off-sample reliability and parameter inference of the AT2017gfo observational data. Finally, we discuss tension introduced by multiband inference in the parameter inference results, particularly with regard to the neural network's recovery of viewing angle. Published by the American Physical Society 2024

Funder

National Science Foundation

U.S. Department of Energy

Los Alamos National Laboratory

National Nuclear Security Administration

Publisher

American Physical Society (APS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3