In-depth analysis of music structure as a text network

Author:

Tsai Ping-Rui1,Chou Yen-Ting1,Wang Nathan-Christopher2,Chen Hui-Ling1,Huang Hong-Yue1,Luo Zih-Jia3,Hong Tzay-Ming1

Affiliation:

1. National Tsing Hua University

2. University of Michigan, Ann Arbor

3. Advanced Semiconductor Engineering

Abstract

Music, enchanting and poetic, permeates every corner of human civilization. Although music is not unfamiliar to people, our understanding of its essence remains limited, and there is still no universally accepted scientific description. This is primarily due to music being regarded as a product of reason and emotion, making it difficult to define. This article treats musical texts as a complex system. This view echoes linguist John Rupert Firth's insight that understanding a word involves defining it through its surrounding relationships. To construct the network we first build a linear regression model with threshold values to assign conditions to the links among note, time, and volume. Then a clustering coefficient representing regional characteristics is utilized to define the word. Finally, the statistical distribution of the text is strictly required to adhere to the grammatical properties of statistical linguistics, such as Zipf's law, to adjust the weights of the linear regression model and achieve optimal results. These processes enable us to comprehend the structural differences in music across different periods with scientific rigor. Relying on the advantages of structuralism, we concentrate on the relationships and order between the physical elements of music, rather than getting entangled in the blurred boundaries of science and philosophy. Aside from serving as a bridge connecting music to natural language processing and knowledge graphs, the technical methods developed in this work offer a more intuitive approach to elucidate the relationships among elements of a complex network. Published by the American Physical Society 2024

Funder

National Science and Technology Council

Publisher

American Physical Society (APS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3