Non-Hermitian pseudomodes for strongly coupled open quantum systems: Unravelings, correlations, and thermodynamics

Author:

Menczel Paul1ORCID,Funo Ken2ORCID,Cirio Mauro3ORCID,Lambert Neill11ORCID,Nori Franco114ORCID

Affiliation:

1. RIKEN

2. National Institutes of Natural Sciences

3. China Academy of Engineering Physics

4. University of Michigan, Ann Arbor

Abstract

The pseudomode framework provides an exact description of the dynamics of an open quantum system coupled to a non-Markovian environment. Using this framework, the influence of the environment on the system is studied in an equivalent model, where the open system is coupled to a finite number of unphysical pseudomodes that follow a time-local master equation. Building on the insight that this master equation does not need to conserve the hermiticity of the pseudomode state, we here ask for the most general conditions on the master equation that guarantee the correct reproduction of the system's original dynamics. We demonstrate that our generalized approach decreases the number of pseudomodes that are required to model, for example, underdamped environments at finite temperature. We also provide an unraveling of the master equation into quantum jump trajectories of non-Hermitian states, which further facilitates the utilization of the pseudomode technique for numerical calculations by enabling the use of easily parallelizable Monte Carlo simulations. Finally, we show that pseudomodes, despite their unphysical nature, provide a natural picture in which physical processes, such as the creation of system-bath correlations or the exchange of heat, can be studied. Hence, our results pave the way for future investigations of the system-environment interaction leading to a better understanding of open quantum systems far from the Markovian weak-coupling limit. Published by the American Physical Society 2024

Funder

Japan Society for the Promotion of Science

Ministry of Education, Culture, Sports, Science and Technology

National Natural Science Foundation of China

National Safety Academic Fund

Japan Science and Technology Agency

Nippon Telegraph and Telephone

Asian Office of Aerospace Research and Development

Office of Naval Research

Publisher

American Physical Society (APS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3