Tensor network noise characterization for near-term quantum computers

Author:

Mangini Stefano12ORCID,Cattaneo Marco12ORCID,Cavalcanti Daniel1,Filippov Sergei1ORCID,Rossi Matteo A. C.1ORCID,García-Pérez Guillermo1

Affiliation:

1. Algorithmiq Ltd

2. University of Helsinki

Abstract

Characterization of noise in current near-term quantum devices is of paramount importance to fully use their computational power. However, direct quantum process tomography becomes unfeasible for systems composed of tens of qubits. A promising alternative method based on tensor networks was recently proposed []. In this paper, we adapt it for the characterization of noise channels on near-term quantum computers and investigate its performance thoroughly. In particular, we show how experimentally feasible tomographic samples are sufficient to accurately characterize realistic correlated noise models affecting individual layers of quantum circuits, and study its performance on systems composed of up to 20 qubits. Furthermore, we combine this noise characterization method with a recently proposed noise-aware tensor network error mitigation protocol for correcting outcomes in noisy circuits, resulting accurate estimations even on deep circuit instances. This positions the tensor-network-based noise characterization protocol as a valuable tool for practical error characterization and mitigation in the near-term quantum computing era. Published by the American Physical Society 2024

Publisher

American Physical Society (APS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3