Neural-shadow quantum state tomography

Author:

Wei Victor12ORCID,Coish W. A.1ORCID,Ronagh Pooya2234,Muschik Christine A.223

Affiliation:

1. McGill University

2. University of Waterloo

3. Perimeter Institute for Theoretical Physics

4. Vancouver, British Columbia V6E 4B1

Abstract

Quantum state tomography (QST) is the art of reconstructing an unknown quantum state through measurements. It is a key primitive for developing quantum technologies. Neural network quantum state tomography (NNQST), which aims to reconstruct the quantum state via a neural network ansatz, is often implemented via a basis-dependent cross-entropy loss function. State-of-the-art implementations of NNQST are often restricted to characterizing a particular subclass of states, to avoid an exponential growth in the number of required measurement settings. To provide a more broadly applicable method for efficient state reconstruction, we present “neural-shadow quantum state tomography” (NSQST)—an alternative neural network-based QST protocol that uses infidelity as the loss function. The infidelity is estimated using the classical shadows of the target state. Infidelity is a natural choice for training loss, benefiting from the proven measurement sample efficiency of the classical shadow formalism. Furthermore, NSQST is robust against various types of noise without any error mitigation. We numerically demonstrate the advantage of NSQST over NNQST at learning the relative phases of three target quantum states of practical interest, as well as the advantage over direct shadow estimation. NSQST greatly extends the practical reach of NNQST and provides a novel route to effective quantum state tomography. Published by the American Physical Society 2024

Funder

Canada First Research Excellence Fund

Natural Sciences and Engineering Research Council of Canada

Alfred P. Sloan Foundation

Publisher

American Physical Society (APS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3