Evaluation of a new teaching-learning sequence on the particulate nature of matter using crystal structures

Author:

Budimaier Florian12ORCID,Hopf Martin1ORCID

Affiliation:

1. University of Vienna

2. University College of Teacher Education

Abstract

Although there has been extensive research on students’ understanding of the particulate nature of matter (PNM), there is still a lack of research on contexts that can be used to teach this challenging topic. In a previous design-based research study, the authors developed a teaching-learning sequence (TLS) on the PNM in the context of crystal structures based on 40 student interviews using the method of probing acceptance. Data suggested that salt and snow crystals form an effective context for learning the concept of emergence and therefore gaining a better understanding of the PNM. To test whether the TLS also promotes students’ use of the PNM in a realistic classroom setting, a proof of principle study was conducted. In six eighth-grade classes in Vienna, students’ use of the PNM was assessed with a pretest before they were taught the TLS during four lessons. After the intervention, students were given a post-test. Open-ended questions were coded using evaluative qualitative content analysis so that quantitative analysis could be applied. T-tests comparing the means of students’ scores on both tests show significant improvements in students’ use of the PNM in the post-test. The context of crystal structures seems to be helpful to students, as most of them use the PNM when asked about crystal formation. In addition, in the post-test, students more often accepted the idea of empty space between particles and associated particle motion with temperature. However, when asked about phase changes, most students remained in a continuous conception of matter. Published by the American Physical Society 2024

Funder

Universität Wien

Publisher

American Physical Society (APS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3