Machine-learning-based pressure-anomaly detection system for SuperKEKB accelerator

Author:

Suetsugu Yusuke1ORCID

Affiliation:

1. KEK

Abstract

This study developed a pressure-anomaly detection system utilizing machine learning for the vacuum system of the SuperKEKB accelerator. The system identified abnormal pressure behaviors among approximately 600 vacuum gauges before triggering the conventional alarm system, facilitating the early implementation of countermeasures and minimizing potential vacuum issues. By comparing the recent pressure behaviors of each vacuum gauge with the previous behaviors, the program detected anomalies using the decision boundary of a feed-forward neural network previously trained on actual abnormal behaviors. Realistic regression models for pressure data curves enabled a reasonable prediction of the causes of anomalies. The program, implemented in python, has been operational since April 2024. Although based on a rudimentary machine-learning concept, the developed anomaly detection system is beneficial for ensuring the stable operation of large-scale machines, including accelerators, and is helpful in designing systems for fault detection. Published by the American Physical Society 2024

Publisher

American Physical Society (APS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3