Thermal and electric field driven rf breakdown precursor formation on metal surfaces

Author:

Shinohara Ryo123ORCID,Bagchi Soumendu3,Simakov Evgenya4ORCID,Baryshev Sergey V.15ORCID,Perez Danny3ORCID

Affiliation:

1. Department of Electrical and Computer Engineering, Michigan State University, Michigan 48824, USA

2. Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA

3. Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

4. Accelerator Operations and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

5. Department of Chemical Engineering and Material Science, Michigan State University, Michigan 48824, USA

Abstract

The phenomenon of electric breakdown poses serious challenges to the design of devices that operate in high electric field environments. Experimental evidence points toward breakdown events that are accompanied by elevated temperatures and dark current spikes, which is attributed to high-asperity nanostructure formation that enhances the local electric field and triggers a runaway process. However, the exact mechanistic origin of such nanostructures under typical macroscopic operational conditions of electric field and magnetic-field-mediated heating remains poorly understood. In this work, we simulate the evolution of a copper surface under the combined action of the electric fields and elevated temperatures. Using a mesoscale curvature-driven surface evolution model, we show how a copper surface can undergo a type of dynamical instability that naturally leads to the formation of sharp asperities in realistic experimental conditions. Exploring the combined effect of fields and temperature rise, we identify the critical regimes that allow for the formation of breakdown precursors. The results show that thermoelastic stresses, while not essential, can significantly lower the critical electric field required for runaway surface instability, which is consistent with experimental observations that thermal effects can increase breakdown rates. Published by the American Physical Society 2024

Funder

Los Alamos National Laboratory

U.S. Department of Energy

Office of Science

High Energy Physics

Publisher

American Physical Society (APS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3