Abstract
We apply principal component analysis (PCA) to a set of electrical output signals from a commercially available superconducting nanowire single-photon detector (SNSPD) to investigate their photon-number-resolving capability. We find that the rising edge as well as the amplitude of the electrical signal have the most dependence on photon number. Accurately measuring the rising edge while simultaneously measuring the voltage of the pulse amplitude maximizes the photon-number resolution of SNSPDs. Using an optimal basis of principal components, we show unambiguous discrimination between one- and two-photon events, as well as partial resolution up to five photons. This expands the use case of SNSPDs to photon-counting experiments, without the need of detector multiplexing architectures.
Published by the American Physical Society
2024
Funder
European Union
German Ministry of Education and Research
Publisher
American Physical Society (APS)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献