All-optical spin access via a cavity-broadened optical transition in on-chip hybrid quantum photonics

Author:

Antoniuk Lukas1ORCID,Lettner Niklas12,Ovvyan Anna P.345ORCID,Haugg Simon1ORCID,Klotz Marco1ORCID,Gehring Helge346ORCID,Wendland Daniel346ORCID,Agafonov Viatcheslav N.7ORCID,Pernice Wolfram H.P.3456ORCID,Kubanek Alexander12ORCID

Affiliation:

1. Institute for Quantum Optics, Ulm University, Ulm 89081, Germany

2. Center for Integrated Quantum Science and Technology (IQST), Ulm University, Albert-Einstein-Allee 11, Ulm 89081, Germany

3. Institute of Physics and Center for Nanotechnology, University of Münster, Münster D-48149, Germany

4. CeNTech — Center for Nanotechnology, Münster 48149, Germany

5. Kirchhoff-Institute for Physics, Heidelberg University, Im Neuenheimer Feld 227, Heidelberg 69120, Germany

6. SoN — Center for Soft Nanoscience, Münster 48149, Germany

7. GREMAN, UMR 7347 CNRS, INSA-CVL, Tours University, Tours 37200, France

Abstract

Hybrid quantum photonic systems connect classical photonics to the quantum world and promise to deliver efficient light-matter quantum interfaces while leveraging the advantages of both, the classical and the quantum, subsystems. However, combining efficient, scalable photonics and solid-state quantum systems with desirable optical and spin properties remains a formidable challenge. In particular, the access to individual spin states and coherent mapping to photons remains unsolved for hybrid systems. In this paper, we demonstrate all-optical initialization and readout of the electron spin of a negatively charged silicon-vacancy center in a nanodiamond coupled to a silicon nitride photonic crystal cavity. We characterize relevant parameters of the coupled emitter-cavity system and determine the silicon-vacancy center’s spin-relaxation and spin-decoherence rate. Our results mark a key step towards the realization of a hybrid spin-photon interface based on silicon nitride photonics and the silicon-vacancy center’s electron spin in nanodiamonds with potential use for quantum networks, quantum communication, and distributed quantum computation. Published by the American Physical Society 2024

Funder

Deutsche Forschungsgemeinschaft

Publisher

American Physical Society (APS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3