Nyquist-compliant cycloidal computed tomography

Author:

Lioliou G.1,Charman A.2,Roche i Morgó O.1ORCID,Endrizzi M.1ORCID,Arridge S.1,Bate D.2ORCID,Olivo A.1ORCID,Hagen C.1ORCID

Affiliation:

1. University College London

2. Nikon X-Tek Systems Ltd

Abstract

Cycloidal computed tomography, by which a lateral sample translation and rotation are combined, is a fully-fly-scan-compatible acquisition scheme for micro-computed-tomography systems using amplitude-modulated beams. Such systems have gained popularity, as they enable x-ray phase-contrast imaging (XPCI) and aperture-driven spatial resolution. The former provides superior contrast for weakly attenuating samples, while the latter allows the resolution of a micro-computed-tomography system to be increased beyond the conventional limit dictated by the source and detector. Such systems initially required time-inefficient step-and-shoot acquisitions, a limitation that has been removed by the development of cycloidal computed tomography. Here we derive cycloidal sampling conditions that are optimal in the sense of the Nyquist-Shannon theorem. Their availability enables the acquisition of well-sampled (i.e., high-resolution) XPCI images in a time-efficient manner, a long-sought outcome with relevance to laboratory implementations, where scan times have traditionally been long, and to synchrotron implementations, where the next frontier is to achieve high-speed (e.g., dynamic) imaging. We make no assumptions on the type of x-ray source used, but demonstrate the optimal conditions with a rotating-anode x-ray tube. Published by the American Physical Society 2024

Funder

EPSRC

Royal Academy of Engineering

Publisher

American Physical Society (APS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3