Hyperbolic enhancement of a quantum battery

Author:

Downing Charles Andrew1ORCID,Ukhtary Muhammad Shoufie12ORCID

Affiliation:

1. Department of Physics and Astronomy, University of Exeter, Exeter EX4 4QL, United Kingdom

2. Research Center for Quantum Physics, National Research and Innovation Agency (BRIN), South Tangerang 15314, Indonesia

Abstract

A quantum system which can store energy, and from which one can extract useful work, is known as a quantum battery. Such a device raises interesting issues surrounding how quantum physics can provide certain advantages in the charging, energy storage, or discharging of the quantum battery as compared to their classical equivalents. However, the pernicious effect of dissipation degrades the performance of any realistic battery. Here, we show how one can circumvent this problem of energy loss by proposing a quantum battery model which benefits from quantum squeezing. Namely, charging the battery quadratically with a short temporal pulse induces a hyperbolic enhancement in the stored energy, such that the dissipation present becomes essentially negligible in comparison. Furthermore, we show that when the driving is strong enough, the useful work which can be extracted from the quantum battery, that is the ergotropy, is exactly equal to the stored energy. These impressive properties imply a highly efficient quantum energetic device with abundant amounts of ergotropy. Our theoretical results suggest a possible route to realizing high-performance quantum batteries, which could be realized in a variety of platforms exploiting quantum continuous variables. Published by the American Physical Society 2024

Funder

Royal Society

Universidade Federal de São Paulo

Publisher

American Physical Society (APS)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3