Interferometry of Non-Abelian Band Singularities and Euler Class Topology

Author:

Breach Oliver12ORCID,Slager Robert-Jan1ORCID,Ünal F. Nur1ORCID

Affiliation:

1. Cavendish Laboratory

2. Rudolf Peierls Centre for Theoretical Physics

Abstract

In systems with a real Bloch Hamiltonian band nodes can be characterized by a non-Abelian frame-rotation charge. The ability of these band nodes to annihilate pairwise is path dependent, since by braiding nodes in adjacent gaps the sign of their charges can be changed. Here, we theoretically construct and numerically confirm two concrete methods to experimentally probe these non-Abelian braiding processes and charges in ultracold atomic systems. We consider a coherent superposition of two bands that can be created by moving atoms through the band singularities at some angle in momentum space. Analyzing the dependency of excitations on the frame charges, we demonstrate an interferometry scheme passing through two band nodes, which reveals the relative frame charges and allows for measuring the multigap topological invariant. The second method relies on a single wave packet probing two nodes sequentially, where the frame charges can be determined from the band populations. Our results present a feasible avenue for measuring non-Abelian charges of band nodes and the direct experimental verification of braiding procedures, which can be applied in a variety of settings including the recently discovered anomalous non-Abelian phases arising under periodic driving. Published by the American Physical Society 2024

Funder

Engineering and Physical Sciences Research Council

Leverhulme Trust

H2020 European Research Council

Royal Society

Trinity College, University of Cambridge

H2020 Marie Skłodowska-Curie Actions

European Commission

Simons Foundation

Aspen Center for Physics

Alfred P. Sloan Foundation

Publisher

American Physical Society (APS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3