Soft X-Ray Phase Nanomicroscopy of Micrometer-Thick Magnets

Author:

Neethirajan Jeffrey1ORCID,Daurer Benedikt J.2ORCID,Martínez Marisel Di Pietro13ORCID,Hrabec Aleš45ORCID,Turnbull Luke13ORCID,Yamamoto Rikako13ORCID,Ferreira Marina Raboni67ORCID,Štefančič Aleš8,Mayoh Daniel Alexander8,Balakrishnan Geetha8ORCID,Pei Zhaowen9ORCID,Xue Pengfei9,Chang Liao9,Ringe Emilie1010ORCID,Harrison Richard10,Valencia Sergio11ORCID,Kazemian Majid2ORCID,Kaulich Burkhard2,Donnelly Claire13ORCID

Affiliation:

1. Max Planck Institute for Chemical Physics of Solids

2. Diamond Light Source

3. Hiroshima University

4. ETH Zurich

5. Paul Scherrer Institute

6. Brazilian Synchrotron Light Laboratory

7. University of Campinas

8. University of Warwick

9. Peking University

10. University of Cambridge

11. Helmholtz-Zentrum Berlin für Materialien und Energie

Abstract

Imaging of nanoscale magnetic textures within extended material systems is of critical importance to both fundamental research and technological applications. While high-resolution magnetic imaging of thin nanoscale samples is well established with electron and soft x-ray microscopy, the extension to micrometer-thick systems currently requires hard x rays, which limits high-resolution imaging to rare-earth magnets. Here, we overcome this limitation by establishing soft x-ray magnetic imaging of micrometer-thick systems using the pre-edge phase x-ray magnetic circular dichroism signal, thus making possible the study of a wide range of magnetic materials. By performing dichroic spectroptychography, we demonstrate high spatial resolution imaging of magnetic samples up to 1.7μm thick, an order of magnitude higher than conventionally possible with soft x-ray absorption-based techniques. We demonstrate the applicability of the technique by harnessing the pre-edge phase to image thick chiral helimagnets, and naturally occurring magnetite particles, gaining insight into their three-dimensional magnetic configuration. This new regime of magnetic imaging makes possible the study of extended non-rare-earth systems that have until now been inaccessible, including magnetic textures for future spintronic applications, non-rare-earth permanent magnets for energy harvesting, and the magnetic configuration of giant magnetofossils. Published by the American Physical Society 2024

Funder

Diamond Light Source

Max-Planck-Gesellschaft

H2020 European Research Council

International Max Planck Research School for Chemistry and Physics of Quantum Materials

Engineering and Physical Sciences Research Council

Horizon 2020 Framework Programme

EXCITE

Publisher

American Physical Society (APS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3