Anomalous Landau Level Gaps Near Magnetic Transitions in Monolayer WSe2

Author:

Foutty Benjamin A.12ORCID,Calvera Vladimir2ORCID,Han Zhaoyu2ORCID,Kometter Carlos R.12,Liu Song3,Watanabe Kenji4ORCID,Taniguchi Takashi4,Hone James C.3,Kivelson Steven A.2,Feldman Benjamin E.125ORCID

Affiliation:

1. Geballe Laboratory for Advanced Materials

2. Stanford University

3. Columbia University

4. National Institute for Materials Science

5. SLAC National Accelerator Laboratory

Abstract

First-order phase transitions produce abrupt changes to the character of both ground and excited electronic states. Here we conduct electronic compressibility measurements to map the spin phase diagram and Landau level (LL) energies of monolayer WSe2 in a magnetic field. We resolve a sequence of first-order phase transitions between completely spin-polarized LLs and states with LLs of both spins. Unexpectedly, the LL gaps are roughly constant over a wide range of magnetic fields below the transitions, which we show reflects spin-polarized ground states with opposite spin excitations. These transitions also extend into compressible regimes, with a sawtooth boundary between full and partial spin polarization. We link these observations to the important influence of LL filling on the exchange energy beyond a smooth density-dependent contribution. Our results show that WSe2 realizes a unique hierarchy of energy scales where such effects induce reentrant magnetic phase transitions tuned by density and magnetic field. Published by the American Physical Society 2024

Funder

Division of Materials Research

Office of Science

U.S. Department of Energy

Basic Energy Sciences

Japan Society for the Promotion of Science

Ministry of Education, Culture, Sports, Science and Technology

National Science Foundation

NSF MRSEC

World Premier International Research Center Initiative

Stanford Nano Shared Facilities

Publisher

American Physical Society (APS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3