Eigenstate Correlations, the Eigenstate Thermalization Hypothesis, and Quantum Information Dynamics in Chaotic Many-Body Quantum Systems

Author:

Hahn Dominik1ORCID,Luitz David J.2ORCID,Chalker J. T.3ORCID

Affiliation:

1. Max Planck Institute for the Physics of Complex Systems

2. Universität Bonn

3. University of Oxford

Abstract

We consider the statistical properties of eigenstates of the time-evolution operator in chaotic many-body quantum systems. Our focus is on correlations between eigenstates that are specific to spatially extended systems and that characterize entanglement dynamics and operator spreading. In order to isolate these aspects of dynamics from those arising as a result of local conservation laws, we consider Floquet systems in which there are no conserved densities. The correlations associated with scrambling of quantum information lie outside the standard framework established by the eigenstate thermalization hypothesis (ETH). In particular, ETH provides a statistical description of matrix elements of local operators between pairs of eigenstates, whereas the aspects of dynamics we are concerned with arise from correlations among sets of four or more eigenstates. We establish the simplest correlation function that captures these correlations and discuss features of its behavior that are expected to be universal at long distances and low energies. We also propose a maximum-entropy ansatz for the joint distribution of a small number n of eigenstates. In the case n=2, this ansatz reproduces ETH. For n=4 it captures both the growth with time of entanglement between subsystems, as characterized by the purity of the time-evolution operator, and also operator spreading, as characterized by the behavior of the out-of-time-order correlator. We test these ideas by comparing results from Monte Carlo sampling of our ansatz with exact diagonalization studies of Floquet quantum circuits. Published by the American Physical Society 2024

Funder

Deutsche Forschungsgemeinschaft

Engineering and Physical Sciences Research Council

QuantERA

Horizon 2020 Framework Programme

National Science Foundation

Publisher

American Physical Society (APS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3