Microwave Control of the Tin-Vacancy Spin Qubit in Diamond with a Superconducting Waveguide

Author:

Karapatzakis Ioannis1ORCID,Resch Jeremias1ORCID,Schrodin Marcel1ORCID,Fuchs Philipp2ORCID,Kieschnick Michael3,Heupel Julia4ORCID,Kussi Luis1ORCID,Sürgers Christoph1ORCID,Popov Cyril4ORCID,Meijer Jan3,Becher Christoph2,Wernsdorfer Wolfgang151ORCID,Hunger David151ORCID

Affiliation:

1. Karlsruhe Institute of Technology (KIT)

2. Saarland University

3. University of Leipzig

4. University of Kassel

5. Institute for Quantum Materials and Technologies (IQMT)

Abstract

Group-IV color centers in diamond are promising candidates for quantum networks due to their dominant zero-phonon line and symmetry-protected optical transitions that connect to coherent spin levels. The negatively charged tin-vacancy (SnV) center possesses long electron spin lifetimes due to its large spin-orbit splitting. However, the magnetic dipole transitions required for microwave spin control are suppressed, and strain is necessary to enable these transitions. Recent work has shown spin control of strained emitters using microwave lines that suffer from Ohmic losses, restricting coherence through heating. We utilize a superconducting coplanar waveguide to measure SnV centers subjected to strain, observing substantial improvement. A detailed analysis of the SnV center electron spin Hamiltonian based on the angle-dependent splitting of the ground and excited states is performed. We demonstrate coherent spin manipulation and obtain a Hahn echo coherence time of up to T2=430μs. With dynamical decoupling, we can prolong coherence to T2=10ms, about a sixfold improvement compared to earlier works. We also observe a nearby coupling C13 spin, which may serve as a quantum memory, thus substantiating the potential of SnV centers in diamond and demonstrates the benefit of superconducting microwave structures. Published by the American Physical Society 2024

Funder

Bundesministerium für Bildung und Forschung

Deutsche Forschungsgemeinschaft

SPINNING

Kompetenzzentrum Quantencomputing Baden-Württenberg

Karlsruhe School of Optics and Photonics

Publisher

American Physical Society (APS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3