Twist-Induced Hyperbolic Shear Metasurfaces

Author:

Yves Simon1,Galiffi Emanuele1ORCID,Ni Xiang12,Renzi Enrico M.1ORCID,Alù Andrea13ORCID

Affiliation:

1. Photonics Initiative, Advanced Science Research Center, City University of New York, New York, New York 10031, USA

2. School of Physics, Central South University, Changsha, 410083, China

3. Physics Program, Graduate Center, City University of New York, New York, New York 10026, USA

Abstract

Following the discovery of moiré-driven superconductivity and density waves in twisted-graphene multilayers, twistronics has spurred a surge of interest in tailored broken symmetries through angular rotations enabling new properties, from electronics to photonics and phononics. Analogously, in monoclinic polar crystals a nontrivial angle between nondegenerate dipolar phonon resonances can naturally emerge due to asymmetries in their crystal lattice, and its variations are associated with intriguing polaritonic phenomena, including axial dispersion, i.e., the rotation of the optical axis with frequency, and microscopic shear effects that result in an asymmetric distribution of material loss. So far, these phenomena have been restricted to specific midinfrared frequencies difficult to access with conventional laser sources and fundamentally limited by the degree of asymmetry and by the strength of light-matter interactions available in natural crystals. Here, we leverage the twistronics concept to demonstrate maximal axial dispersion and loss redistribution of hyperbolic waves in elastic metasurfaces, achieved by tailoring the angle between coupled metasurface pairs featuring tailored anisotropy. We show extreme control over elastic wave dispersion and absorption via the twist angle and leverage the resulting phenomena to demonstrate enhanced propagation distance, in-plane reflection-free negative refraction and diffraction-free defect detection. Our work welds the concepts of twistronics, non-Hermiticity, and extreme anisotropy, demonstrating the powerful opportunities enabled by metasurfaces for tunable, highly directional surface-acoustic-wave propagation of great interest for a wide range of applications spanning from seismic mitigation to on-chip phononics and wireless communication systems, hence paving the way toward their translation into emerging photonic and polaritonic metasurface technologies. Published by the American Physical Society 2024

Funder

Office of Naval Research

Simons Foundation

Air Force Office of Scientific Research

Publisher

American Physical Society (APS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hyperbolic Shear Metasurfaces;Physical Review Letters;2024-06-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3