Machine learning techniques to construct detailed phase diagrams for skyrmion systems
Author:
Funder
Consejo Nacional de Investigaciones Científicas y Técnicas
Secretaria de Ciencia y Tecnica, Universidad de Buenos Aires
Publisher
American Physical Society (APS)
Link
http://harvest.aps.org/v2/journals/articles/10.1103/PhysRevB.105.214423/fulltext
Reference49 articles.
1. Solving the quantum many-body problem with artificial neural networks
2. Identifying quantum phase transitions using artificial neural networks on experimental data
3. Discovering phase transitions with unsupervised learning
4. Learning phase transitions by confusion
5. Machine learning phases of matter
Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Melting phenomena of self-organized magnetic structures investigated by variational autoencoder;Computer Physics Communications;2024-12
2. Classification of skyrmionic textures and extraction of Hamiltonian parameters via machine learning;Physical Review Applied;2024-03-06
3. Machine learning for structure-property mapping of Ising models: Scalability and limitations;Physical Review E;2023-12-13
4. Estimating Patterns of Classical and Quantum Skyrmion States;Journal of the Physical Society of Japan;2023-08-15
5. Application of machine learning in solid state physics;Solid State Physics;2023
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3