Non-Abelian Hopf-Euler insulators

Author:

Jankowski Wojciech J.1ORCID,Morris Arthur S.1,Davoyan Zory1,Bouhon Adrien1234ORCID,Ünal F. Nur1ORCID,Slager Robert-Jan1ORCID

Affiliation:

1. Cavendish Laboratory, Department of Physics

2. Nordita

3. Stockholm University

4. KTH Royal Institute of Technology

Abstract

We discuss a class of three-band non-Abelian topological insulators in three dimensions that carry a single bulk Hopf index protected by spatiotemporal (PT) inversion symmetry. These phases may also host subdimensional topological invariants given by the Euler characteristic class, resulting in real Hopf-Euler insulators. Such systems naturally realize helical nodal structures in the three-dimensional Brillouin zone, providing a physical manifestation of the linking number described by the Hopf invariant. We show that, by opening a gap between the valence bands of these systems, one finds a fully-gapped “flag” phase, which displays a three-band multigap Pontryagin invariant. Unlike the previously reported PT-symmetric four-band real Hopf insulator, which hosts a ZZ invariant, these phases are not unitarily equivalent to two copies of a complex two-band Hopf insulator. We show that such uncharted phases can be obtained through dimensional extension of two-dimensional Euler insulators, and that they support (i) an optical bulk integrated circular shift effect quantized by the Hopf invariant, (ii) quantum-geometric breathing in the real-space Wannier functions, and (iii) surface Euler topology on boundaries. Consequently, our findings pave the way for novel experimental realizations of real-space quantum geometry, as these systems may be directly simulated by utilizing synthetic dimensions in metamaterials or ultracold atoms. Published by the American Physical Society 2024

Funder

Engineering and Physical Sciences Research Council

Vetenskapsrådet

Royal Society

Publisher

American Physical Society (APS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3