Symmetries and wave functions of photons confined in three-dimensional photonic band gap superlattices

Author:

Kozoň Marek11ORCID,Lagendijk Ad1,Schlottbom Matthias1ORCID,van der Vegt Jaap J. W.1ORCID,Vos Willem L.1ORCID

Affiliation:

1. University of Twente

Abstract

We perform a computational study of confined photonic states that appear in a three-dimensional (3D) superlattice of coupled cavities, resulting from a superstructure of intentional defects. The states are isolated from the vacuum by a 3D photonic band gap, using a diamondlike inverse woodpile crystal structure, and they exhibit “Cartesian” hopping of photons in high-symmetry directions. We investigate the confinement dimensionality to verify which states are fully 3D-confined, using a recently developed scaling theory to analyze the influence of the structural parameters of the 3D crystal. We create confinement maps that trace the frequencies of 3D-confined bands for select combinations of key structural parameters, namely the pore radii of the underlying regular crystal and of the defect pores. We find that a certain minimum difference between the regular and defect pore radii is necessary for 3D-confined bands to appear, and that an increasing difference between the defect pore radii from the regular radii supports more 3D-confined bands. In our analysis, we find that their symmetries and spatial distributions are more varied than electronic orbitals known from solid-state physics. We surmise that this difference occurs since the confined photonic orbitals derive from global Bloch states governed by the underlying superlattice structure, whereas single-atom orbitals are localized. Based on this realization, we suggest that the extent symmetries of “photonic orbitals” could possibly translate to novel macroscopic behaviors of “photonic solid-state matter,” never before seen in the standard electronic solid-state systems. We also discover pairs of degenerate 3D-confined bands with p-like orbital shapes and mirror symmetries matching the symmetry of the superlattice. Finally, we investigate the enhancement of the local density of optical states for cavity quantum electrodynamics applications. We find that donorlike superlattices, i.e., where the defect pores are smaller than the regular pores, provide greater enhancement in the air region than acceptorlike structures with larger defect pores, and thus offer better prospects for doping with quantum dots and ultimately for 3D networks of single photons steered across strongly coupled cavities. Published by the American Physical Society 2024

Funder

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Académie des Sciences, Institut de France

Publisher

American Physical Society (APS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3