Vison condensation and spinon confinement in a kagome-lattice Z2 spin liquid: A numerical study of a quantum dimer model

Author:

Hwang Kyusung1ORCID

Affiliation:

1. Korea Institute for Advanced Study

Abstract

Quantum spin liquids are exotic many-body states featured with long-range entanglement and fractional anyon quasiparticles. Quantum phase transitions of spin liquids are particularly interesting problems related with novel phenomena of anyon condensation and anyon confinement. Here we study a quantum dimer model, which implements a transition between a Z2 spin liquid (Z2SL) and a valence bond solid (VBS) on the kagome lattice. The transition is driven by the condensation of vison excitation of the Z2 spin liquid, which impacts on other anyon excitations especially leading to the confinement of spinon excitations. By numerical exact diagonalization of the dimer model, we directly measure the vison condensation using vison string operators, and explicitly check a confining potential acting on spinon excitations in the VBS state. It is observed that topological degeneracy of the spin-liquid state is lifted concomitantly with the vison condensation. The dimer ordering pattern of the VBS state is identified by investigating dimer structure factor. Furthermore, we find an interesting state that exhibits features of spin liquid and VBS simultaneously. We discuss the origin of the mixed behaviors and possible scenarios expected in thermodynamic limit. This work complements the previous analytical studies on the dimer model [ and ] by providing numerical evidences on the vison condensation and the spinon confinement in the Z2SL-to-VBS transition. Published by the American Physical Society 2024

Funder

Korea Institute for Advanced Study

Publisher

American Physical Society (APS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3