Quench dynamics in lattices above one dimension: The free fermionic case

Author:

Gibbins Molly11,Jafarizadeh Arash11ORCID,Gammon-Smith Adam11ORCID,Bertini Bruno11

Affiliation:

1. University of Nottingham

Abstract

We begin a systematic investigation of quench dynamics in higher-dimensional lattice systems considering the case of noninteracting fermions with conserved particle number. We prepare the system in a translational-invariant nonequilibrium initial state, the simplest example being a classical configuration with fermions at fixed positions on the lattice, and let it evolve in time. We characterize the system's dynamics by measuring the entanglement between a finite connected region and its complement. We observe the transmutation of entanglement entropy into thermodynamic entropy and investigate how this process depends on the shape and orientation of the region with respect to the underlying lattice. Interestingly, we find that irregular regions display a distinctive multislope entanglement growth, while the dependence on the orientation angle is generically fairly weak. This is particularly true for regions with a large (discrete) rotational symmetry group. The main tool of our analysis is the celebrated quasiparticle picture of Calabrese and Cardy, which we generalize to describe the case at hand. Specifically, we show that for generic initial configurations (even when restricting to classical ones) one has to allow for the production of multiplets involving n>2 quasiparticles and carrying nondiagonal correlations. We obtain quantitatively accurate predictions, tested against exact numerics, and propose an efficient Monte Carlo based scheme to evaluate them for arbitrary connected regions of generic higher-dimensional lattices. Published by the American Physical Society 2024

Funder

Royal Society

Publisher

American Physical Society (APS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3