Classification of classical spin liquids: Detailed formalism and suite of examples

Author:

Yan Han12,Benton Owen34ORCID,Nevidomskyy Andriy H.1,Moessner Roderich3

Affiliation:

1. Department of Physics and Astronomy, Rice University, Houston, Texas 77005, USA

2. Smalley-Curl Institute, Rice University, Houston, Texas 77005, USA

3. Max Planck Institute for Physics of Complex Systems, Nöthnitzer Str. 38, Dresden 01187, Germany

4. School of Physical and Chemical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom

Abstract

The hallmark of highly frustrated systems is the presence of many states close in energy to the ground state. Fluctuations between these states can preclude the emergence of any form of order and lead to the appearance of spin liquids. Even on the classical level, spin liquids are not all alike: they may have algebraic or exponential correlation decay, and various forms of long wavelength description, including vector or tensor gauge theories. Here, we introduce a classification scheme, allowing us to fit the diversity of classical spin liquids (CSLs) into a general framework as well as predict and construct new kinds. CSLs with either algebraic or exponential correlation-decay can be classified via the properties of the bottom flat band(s) in their soft-spin Hamiltonians. The classification of the former is based on the algebraic structures of gapless points in the spectra, which relate directly to the emergent generalized Gauss's laws that control the low-temperature physics. The second category of CSLs, meanwhile, are classified by the fragile topology of the gapped bottom band(s). Utilizing the classification scheme we construct new models realizing exotic CSLs, including one with anisotropic generalized Gauss's laws and charges with subdimensional mobility, one with a network of pinch-line singularities in its correlation functions and a series of fragile topological CSLs connected by zero-temperature transitions. Published by the American Physical Society 2024

Funder

National Science Foundation

Deutsche Forschungsgemeinschaft

Publisher

American Physical Society (APS)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3