Machian fractons, Hamiltonian attractors, and nonequilibrium steady states

Author:

Prakash Abhishodh1ORCID,Sadki Ylias1ORCID,Sondhi S. L.1

Affiliation:

1. University of Oxford

Abstract

We study the N fracton problem in classical mechanics, with fractons defined as point particles that conserve multipole moments up to a given order. We find that the nonlinear Machian dynamics of the fractons is characterized by late-time attractors in position-velocity space for all N, despite the absence of attractors in phase space dictated by Liouville's theorem. These attractors violate ergodicity and lead to nonequilibrium steady states, which always break translational symmetry, even in spatial dimensions where the Hohenberg-Mermin-Wagner-Coleman theorem for equilibrium systems forbids such breaking. We provide a conceptual understanding of our results using an adiabatic approximation for the late-time trajectories and an analogy with the idea of “order-by-disorder” borrowed from equilibrium statistical mechanics. Altogether, these fracton systems host a paradigm for Hamiltonian dynamics and nonequilibrium many-body physics. Published by the American Physical Society 2024

Funder

European Research Council

Horizon 2020

Engineering and Physical Sciences Research Council

Leverhulme Trust

Publisher

American Physical Society (APS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3