Time-domain constraints for passive materials: The Brendel-Bormann model revisited

Author:

Nordebo Sven1ORCID,Štumpf Martin23ORCID

Affiliation:

1. Linnæus University

2. Brno University of Technology

3. Luleå University of Technology

Abstract

This paper presents a systematic approach to derive physical bounds for passive systems, or equivalently for positive real (PR) functions, directly in the time-domain (TD). As a generic, canonical example we explore the TD dielectric response of a passive material. We will furthermore revisit the theoretical foundation regarding the Brendel-Bormann (BB) oscillator model which is reportedly very suitable for the modeling of thin metallic films in high-speed optoelectronic devices. To this end, an important result here is to re-establish the physical realizability of the BB model by showing that it represents a passive and causal system. The theory is based on Cauer's representation of an arbitrary PR function together with associated sum rules (moments of the measure) and exploits the unilateral Laplace transform to derive rigorous bounds on the TD response of a passive system. Similar bounds have recently been reported for more general casual systems with other assumptions. To this end, it is important to note here that the existence of useful sum rules and related physical bounds rely heavily on an assumption about the PR functions having a low- or high-frequency asymptotic expansion at least of odd order 1. As a particular numerical example, we consider here the electric susceptibility of gold (Au) which is commonly modeled by well established Drude or BB models. Explicit physical bounds are given as well as an efficient fast-Fourier transform -based numerical procedure to compute the TD impulse response associated with the nonrational BB model. Published by the American Physical Society 2024

Publisher

American Physical Society (APS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3