Development of Rotaxanes as E-Field-Sensitive Superstructures in Plasmonic Nano-Antennas

Author:

Jucker Laurent1ORCID,Ochs Maximilian2ORCID,Kullock René2,Aeschi Yves1,Hecht Bert2ORCID,Mayor Marcel134ORCID

Affiliation:

1. Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland

2. Nano-Optics and Biophotonics Group, Experimentelle Physik 5, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany

3. Institute for Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), P. O. Box 3640, 76021 Karlsruhe, Germany

4. Lehn Institute of Functional Materials (LIFM), School of Chemistry, Sun Yat-Sen University (SYSU), Guangzhou 510275, P. R. of China

Abstract

We present the concept of electrostatic field-driven supramolecular translation within electrically connected plasmonic nano-antennas. The antenna serves as an anchoring point for the mechanically interlocked molecules, as an electrode for the electrostatic field, and as an amplifier of the antenna-enhanced fluorescence. The synthesis of a push–pull donor–π–acceptor chromophore with optical properties aligned to the antenna resonance is described and its immobilization on the surface is demonstrated. Photoluminescence experiments of the chromophore on a gold nano-antenna are shown, highlighting the molecule–antenna coupling and resulting emission intensity increase. The successful synthesis of an electrostatic field-sensitive [2]rotaxane in water is described and the tightrope walk between functionality and water solubility is illustrated by unsuccessful designs. In solution, an enhanced fluorescence quantum yield is observed for the chromophore comprising the mechanically interlocked [2]rotaxane in water and DMSO compared to the reference rod, ideal for future experiments in plasmonic nano-antennas.

Funder

Volkswagen Foundation

Publisher

Georg Thieme Verlag KG

Subject

Materials Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3