Transcription Factor ELK3 Promotes Stemness and Oxaliplatin Resistance of Glioma Cells by Regulating RNASEH2A

Author:

Mei Yimin1,Chen Duoning1,He Shike1,Ye Jinping1,Luo Ming1,Wu Qiangjun1,Huang Yuan2

Affiliation:

1. Neurosurgery, Zhejiang Lishui Central Hospital, Lishui, China

2. Pathology, Zhejiang Lishui Central Hospital, Lishui, China

Abstract

AbstractOxaliplatin is a member of the platinum group that is often used to treat glioma, a common type of malignant brain tumor, though it does not come with desirable and notable effects. This study attempted to investigate how ELK3 impacts the oxaliplatin resistance of glioma cells and its molecular mechanism. Bioinformatics analysis was employed to screen mRNAs with differential expression in glioma cells and predict the possible regulator downstream. We used qRT-PCR to detect the expression of ELK3 and RNASEH2A. Dual-luciferase and ChIP assays were adopted to reassure the regulatory relationship between the two. We also evaluated cell viability and sphere formation efficiency through CCK-8 and sphere formation assay and calculated the IC50 value by using CCK-8 assay. The expression of stemness-related proteins (ALDH1 and Nanog) was assessed through western blot. Glioma cells and tissues presented a significantly high expression of ELK3, the knock-down of which would reduce the cell viability, stemness and oxaliplatin resistance dramatically. Bioinformatics analysis predicted RNASEH2A to be the downstream regulator of ELK3. RNASEH2A was remarkably upregulated in glioma tissue and cells. The results from dual luciferase assay and ChIP experiment verified the binding relationship between RNASEH2A promoter region and ELK3. Then through rescue experiments, we confirmed that overexpression of RNASEH2A could compensate for the inhibition of glioma cell progression resulting from the knock-down of ELK3. ELK3 could promote stemness and oxaliplatin resistance of glioma cells by upregulating RNASEH2A, indicating that targeting ELK3/RNASEH2A axis may be a possible solution to overcome oxaliplatin resistance of glioma cells.

Publisher

Georg Thieme Verlag KG

Subject

Biochemistry (medical),Clinical Biochemistry,Endocrinology,Biochemistry,General Medicine,Endocrinology, Diabetes and Metabolism

Reference29 articles.

1. Glioblastoma multiforme: a review of its epidemiology and pathogenesis through clinical presentation and treatment;F Hanif;Asian Pac J Cancer Prev,2017

2. Role of neutrophils and myeloid-derived suppressor cells in glioma progression and treatment resistance;S Khan;Int J Mol Sci,2020

3. Overcoming therapeutic resistance in glioblastoma: the way forward;S Osuka;J Clin Invest,2017

4. Gardenia jasminoides enhances CDDP-induced apoptosis of glioblastoma cells via AKT/mTOR pathway while protecting death of astrocytes;H I Kim;Nutrients,2020

5. Exosomal transfer of long non-coding RNA SBF2-AS1 enhances chemoresistance to temozolomide in glioblastoma;Z Zhang;J Exp Clin Cancer Res,2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3