19 Enantioselective Cross-Dehydrogenative Coupling

Author:

Faisca Phillips A. M.ORCID,Guedes da Silva M. F. C.ORCID,Pombeiro A. J. L.ORCID

Abstract

AbstractThe possibility of creating a chiral center directly from two C—H bonds, or from a C—H bond and an X—H bond (X = heteroatom), without any prior derivatization (e.g., the installation of a leaving group) opens up many new possibilities in synthesis. Many chiral ligands and organocatalysts have now been discovered to be compatible with the oxidizing conditions in which these transformations take place. Furthermore, as reactions that can be performed under milder conditions are found, such as those that involve the use of molecular oxygen or even air to accept the two hydrogen atoms lost, or that can be run at lower temperatures, the repertoire of cross-dehydrogenative coupling (CDC) methodologies has become even bigger. Ligands such as mono- and bisoxazolines, bisphosphines, axially chiral binaphthols and bi-2-naphthylamine derivatives, and salens, as well as organocatalysts such as amino acids, chiral amines and diamines, cinchona alkaloids, axially chiral phosphoric acids, imidodiphosphoric acids, imidazolinones, and thioureas, amongst others, have been found to be robust and to perform well under CDC reaction conditions, providing high asymmetric induction and good yields of products. Some of these catalysts also work well in synergy with another catalyst. Recent developments in this area include the use of light energy for activation in combination with photocatalysts, as well as methods based on the use of electrochemistry. In this review, methods involving CDC that have been developed for the synthesis of molecules with one or more chiral centers, including compounds with axial or planar chirality, are presented, and their scope and limitations are discussed. The organization is based firstly on the type of catalysis used, and then divided further according to the type of bond being formed.

Publisher

Georg Thieme Verlag KG

Reference102 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3