2.2 CuAAC in Peptidomimetics and Protein Mimics

Author:

Meuleman T. J.,Liskamp R. M. J.ORCID

Abstract

AbstractThe tremendous recent developments in click chemistry, including the impressive developments of strain-promoted cycloaddition reagents, all started with the copper-catalyzed azide–alkyne cycloaddition (CuAAC) reaction conceived by Meldal et al. and Sharpless et al. This led to a revolution of extremely important applications in the chemical, biological, medical, and materials sciences. It is fair to state that, especially in the synthesis of multifunctional and complex small-to-large biomolecular constructs, CuAAC has been indispensable. This has been particularly evident in the area of peptides, peptidomimetics, and protein mimics. These biomolecules play key roles in the various peptide–peptide, peptide–protein, and protein–protein interactions that are involved in many diseases and disorders, and peptide-based therapeutics can be important in this context. However, it is often important to improve the bioactivity and overall stability, and modulate the spatial structure, of peptide-based therapeutics. The incorporation of the 1,4-disubstituted 1,2,3-triazole moiety as a non-native structural element using CuAAC is explored in this chapter. The resulting incorporated triazole moiety can lead to structural surrogates of the amide bond and disulfide bond. As a consequence, CuAAC can be utilized toward introducing conformational constraints and stabilizing secondary structures of α-helices, β-sheets/turns, or loop-like structures. In addition, CuAAC can be used to combine various peptide sequences with molecular scaffolds to develop protein mimics that can find applications as synthetic vaccines and antibodies.

Publisher

Georg Thieme Verlag KG

Reference132 articles.

1. J. Am. Chem. Soc.;Merrifield R. B.,1963

2. Science (Washington, D. C.);Merrifield B.,1986

3. Bioorg. Med. Chem.;Lau J. L.,2018

4. AAPS J.;Di L.,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3