Radiomorphometric Quantitative Analysis of Vasculature Utilizing Micro–Computed Tomography and Vessel Perfusion in the Murine Mandible

Author:

Jing Xi Lin12,Farberg Aaron S.2,Monson Laura A.2,Donneys Alexis2,Tchanque-Fossuo Catherine N.2,Buchman Steven R.2

Affiliation:

1. Department of General Surgery, Henry Ford Health System, Detroit, Michigan

2. Department of Plastic Surgery, University of Michigan, Ann Arbor, Michigan

Abstract

Purpose Biomechanical, densitometric, and histological analyses have been the mainstay for reproducible outcome measures for investigation of new bone formation and osseous healing. Here we report the addition of radiomorphometric vascular analysis as a quantitative measure of vascularity in the murine mandible. To our knowledge this is the first description of using micro–computed tomography (micro-CT) to evaluate the temporal and spatial pattern of angiogenesis in the craniofacial skeleton. Methods The vessel perfusion technique was performed on 10 Sprague-Dawley rats using Microfil (MV-122, Flow Tech; Carver, MA). After decalcification, hemimandibles were imaged using high-resolution micro-CT. Six separate radiomorphometric vascular metrics were calculated. Results Radiomorphometric values were analyzed using three different thresholds on micro-CT. Experimentally, 1000 Hounsfield units was found to be the optimal threshold for analysis to capture the maximal vascular content of the bone. Data from seven hemimandibles were analyzed. Minimal statistical variance in each of the quantitative measures of vascularity resulted in reproducible metrics for each of the radiomorphometric parameters. Conclusions We have demonstrated that micro-CT vascular imaging provides a robust methodology for evaluation of vascular networks in the craniofacial skeleton. This technique provides 3D quantitative data analysis that differs significantly from laser Doppler and microsphere methods, which simply measure flow. This technique is advantageous over labor-intensive 2D conventional analyses using histology and X-ray microangiography. Our data establish the appropriate thresholding for optimal vascular analyses and provide baseline measurements that can be used to analyze the role of angiogenesis in bone regeneration and repair in the craniofacial skeleton.

Publisher

SAGE Publications

Subject

Otorhinolaryngology,Oral Surgery,Surgery

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3