Biosynthesis and Chemopreventive Potential of Jute (Corchorus capsularis and C. olitorius) Flavonoids and Phylogeny of Flavonoid Biosynthesis Pathways

Author:

Satya Pratik1,Sarkar Debabrata1,Chatterjee Amitava2,Pal Srikumar3,Ray Soham1,Sharma Laxmi1,Roy Suman1,Bera Amit1,Ghosh Srinjoy1,Mitra Jiban1,Kar Gouranga1,Singh Nagendra Kumar4

Affiliation:

1. ICAR-Central Research Institute for Jute and Allied Fibres, Barrackpore, Kolkata, India

2. Faculty Centre of Integrated Rural Development & Management, Ramakrishna Mission Vivekananda Educational and Research Institute, Narendrapur, Kolkata, India

3. Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, West Bengal, India

4. ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, India

Abstract

AbstractFlavonoids are valuable phytochemicals for human health and nutrition. Jute (Corchorus capsularis and C. olitorius), a vegetable rich in phenolics and flavonoids, is globally consumed for its health benefit, but the biosynthesis pathways and metabolic profiles of its flavonoids are poorly characterized. Elucidating the flavonoid biosynthesis pathways would augment the broader use of jute, including targeted synthesis of its specific flavonoids. We reconstructed the core flavonoid biosynthesis pathways in jute by integrating transcriptome mining, HPLC and flavonoid histochemistry. In C. capsularis (white jute), the flavonoid biosynthesis pathways’ metabolic flux was driven toward the biosynthesis of proanthocyanidins that mediate the acquisition of abiotic stress tolerance. However, higher levels of flavonols in C. olitorius (tossa jute) render it more suitable for nutritional and medicinal use. Jute flavonoid extract exhibited in vitro inhibition of matrix metalloproteinase-2, suggesting its potential chemopreventive and immunity-boosting roles. Using the flavonoid biosynthesis pathways profiles of 93 plant species, we reconstructed the flavonoid biosynthesis pathways phylogeny based on distance-based clustering of reaction paths. This reaction-path flavonoid biosynthesis pathways phylogeny was quite distinct from that reconstructed using individual gene sequences. Our flavonoid biosynthesis pathways-based classification of flavonoid groups corroborates well with their chemical evolution, suggesting complex, adaptive evolution of flavonoid biosynthesis pathways, particularly in higher plants.

Publisher

Georg Thieme Verlag KG

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3