Additional Factor X Enhances Emicizumab-Driven Coagulation Function in Patients with Hemophilia A and Hemophilia A Mice

Author:

Shimizu Kazuki1,Nakajima Yuto,Takami Eisuke2,Nakano Hirotoshi2,Nogami Keiji1

Affiliation:

1. Department of Pediatrics, Nara Medical University, Kashihara, Nara, Japan

2. Medical Affairs Section, KM Biologics Co., Ltd, Kumamoto, Japan

Abstract

Background Bypassing agents are used for breakthrough bleedings in patients with hemophilia A with inhibitor (PwHAwI) receiving emicizumab prophylaxis. Previous study demonstrated a weak binding affinity between emicizumab and factor (F)X (K d; 1.85 μM), and that this value was much greater than the plasma FX concentration (∼130 nM). We speculated that increased FX levels could enhance coagulation potential in emicizumab-treated patients with hemophilia A (PwHA). To investigate the relationship between FX concentrations and emicizumab-driven coagulation. Methods Plasma FX (up to 1,040 nM) and emicizumab (50 µg/mL) were added to FVIII-deficient plasmas, and plasma-derived FX (520 nM) or recombinant (r)FVIIa (2.2 µg/mL) was added to plasmas from three emicizumab-treated PwHAwI. The adjusted maximum coagulation velocity (Ad|min1|) by clot waveform analysis and peak thrombin (PeakTh) by thrombin generation assay in them were evaluated. Emicizumab (3.0 mg/kg), human (h)FIX (100 IU/kg), and various doses of hFX (100–500 IU/kg) were intravenously administered to HA mice. Clotting time/clot formation time (CT/CFT) were assessed using rotational thromboelastometry, and blood loss was estimated by a tail-clip assay. Results The addition of FX to FVIII-deficient plasma with emicizumab increased Ad|min1| and PeakTh. The coagulation parameters in emicizumab-treated PwHAwI spiked with additional FX remained within the normal range as well as the additional rFVIIa. In animal models, hFX injection shortened the CT and CT + CFT. The shorter CT and CT + CFT, and the lower blood loss were evident after 200 or 500 IU/kg hFX administration, and those indices were comparable to those in wild-type mice. Conclusion Supplementation with FX may improve emicizumab-driven hemostasis in PwHA.

Funder

Ministry of Education, Culture, Sports, Science and Technology

Publisher

Georg Thieme Verlag KG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3