AGEs RAGE Pathways: Alzheimer’s Disease

Author:

Maheshwari Shubhrat1

Affiliation:

1. Faculty of Pharmaceutical Sciences, Rama University, Kanpur, Uttar Pradesh, India

Abstract

AbstractNeurofibrillary tangles and plaques containing tau serve as the biological markers for Alzheimer disease (AD) and pathogenesis is widely believed to be driven by the production and deposition of the β-amyloid peptide (Aβ). The β-amyloid peptide (Aβ) that results from the modification of the amyloid precursor protein (APP) by builds up as amyloid deposits in neuronal cells. Thus, a protein misfolding process is involved in the production of amyloid. In a native, aqueous buffer, amyloid fibrils are usually exceedingly stable and nearly insoluble. Although amyloid is essentially a foreign substance made of self-proteins, the immune system has difficulty identifying and eliminating it as such for unknown reasons. While the amyloidal deposit may have a direct role in the disease mechanism in some disease states involving amyloidal deposition, this is not always the case. Current research has shown that PS1 (presenilin 1) and BACE (beta-site APP-cleaving enzyme) have – and -secretase activity that increases β-amyloid peptide (Aβ). Wealth of data has shown that oxidative stress and AD are closely connected that causes the death of neuronal cells by producing reactive oxygen species (ROS). Additionally, it has been demonstrated that advanced glycation end products (AGEs) and β-amyloidal peptide (Aβ) together increase neurotoxicity. The objective of this review is to compile the most recent and intriguing data of AGEs and receptor for advanced glycation end products (RAGE) pathways which are responsible for AD.

Publisher

Georg Thieme Verlag KG

Subject

Drug Discovery,General Medicine

Reference35 articles.

1. Influence of advanced glycation end-products and AGE-inhibitors on nucleation-dependent polymerization of beta-amyloid peptide;G Munch;Biochim Biophys Acta,1997

2. Advanced glycation end products enhance amyloid precursor protein expression by inducing reactive oxygen species;S Y Ko;Free Radic Biol Med,2010

3. Neuroprotective role of Sirt1 in mammalian models of Huntington's disease through activation of multiple Sirt1 targets. Nat Med 18:153–158. 31. Kim D, Nguyen MD, Dobbin MM, Fischer A, Sananbenesi F, Rodgers JT, et al. (2007) SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer's disease and amyotrophic lateral sclerosis;M Jiang;EMBO J,2012

4. Interactions between SIRT1 and MAPK/ ERK regulate neuronal apoptosis induced by traumatic brain injury in vitro and in vivo;Y Zhao;Exp Neurol,2012

5. SIRT1 activating compounds reduce oxidative stress mediated neuronal loss in viral induced CNS demyelinating disease;R S Khan;Acta Neuropathol Commun,2014

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3