Islet Like Cells Induced from Umbilical Cord Mesenchymal Stem Cells with Neonatal Bovine Pancreatic Mesenchymal Exosomes for Treatment of Diabetes Mellitus

Author:

Yun Feiyu1,Zhaorigen Bayalige1,Han Xia1,Li Xin2,Yun Sheng1

Affiliation:

1. Stem Cell Center, Affiliated Hospital of Inner Mongolia Medical University, Huhehot, China

2. Fengyuan Biosciences Company, Fengyuan Biosciences Company, Guangzhou, China

Abstract

AbstractTo investigate the safety and efficacy of the islet-like cell (cell) induced from human umbilical cord mesenchymal stem cell (UCMSC) with different methods for the treatment of diabetic animal model. UCMSCs were induced to βcells with cytokines (CY) and neonatal bovine pancreatic mesenchymal cell exosomes (Ex) combined with CY (EX+CY). The insulin secretion of UCMSC and βcell was measured with ELISA when the cells were growing in different concentrations of glucose media for different times. UCMSCs (4×105) and the same number of cells prepared with two methods were transplanted to type I diabetic rat models. UCMSCs could be induced into islet βcells by CY or EX+CY in vitro. The insulin secretion of the prepared β cells growing in 25.0 mM glucose medium was over 5-fold of that in 6.0 mM glucose. The transplantation of the βcells to type I diabetic rat models could reduce the blood glucose and prolong the survival time. The β cells induced by EX+CY had much more significant effects on decreasing blood glucose and increasing survival time (p<0.01). The cells did not affect blood sugar level and had no serious side-effects in human health. UCMSC could be induced to islet βcells with either CY or EX+CY. The transplantation of the induced islet βcells could reduce blood glucose and prolong the survival time of diabetic animal models. Although the cells induced with EX+CY had more significant effects on diabetic rats, they did not affect blood glucose level and had no serious side-effects in human health.

Publisher

Georg Thieme Verlag KG

Subject

Biochemistry (medical),Clinical Biochemistry,Endocrinology,Biochemistry,General Medicine,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3