A Combination of Computational and Experimental Studies to Correlate Electronic Structure and Reactivity of Donor–Acceptor Singlet Carbenes

Author:

Sen Subhabrata1,Maiti Debajit1,Singh Shweta1,Gremaud Ludovic2

Affiliation:

1. Dept. of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence Deemed to be University

2. University of Applied Sciences Western Switzerland, Faculty of Engineering and Architecture, Department of Chemistry

Abstract

AbstractMost of the reactivities of donor–acceptor (D–A) singlet carbenes are similar to metal carbenoids. However, the lone pair at the carbenoid carbon, coordinated with metal, is free in D–A carbene thereby making it nucleophilic as well. Herein, DFT-optimized structural features of D–A carbene has been investigated and is compared with rhodium carbenoid. It was observed that, when a D–A carbene reacts with cyclic-1,3-diones in different ethereal solvents, it is the lone pair at the sp2 orbital of the carbene that abstracts the proton from the enol form (of the cyclic-1,3-diones) to form a benzylic carbocation and an enolate. Subsequently, the carbocation undergoes nucleophilic attack by O of the ether solvents and then by the enolate to afford the desired ether-linked products. Accordingly, herein the reaction in THF, which otherwise had failed to work as a substrate in reported amino etherification reactions, worked well. DFT-calculated orbital energy levels and reaction profile support this reverse reactivity of singlet carbenes. Furthermore, HOMO–LUMO calculations indicated that electron-rich arenes in D–A carbene stabilizes the LUMO and destabilizes the HOMO which increases yield. Additionally, a library of 37 enol ether and 39 ether-linked compounds of potential medicinal relevance have been synthesized with good to excellent yields using numerous cyclic-1,3-diones.

Funder

Shiv Nadar University

Publisher

Georg Thieme Verlag KG

Subject

Organic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3