Leveraging Electronic Dental Record Data to Classify Patients Based on Their Smoking Intensity

Author:

Patel J.12,Siddiqui Z.1,Krishnan A.1,Thyvalikakath T.123

Affiliation:

1. Dental Informatics Core Division, Department of Cariology, Operative Dentistry, and Dental Public Health, Indiana University School of Dentistry, Indiana University – Purdue University Indianapolis, Indianapolis, Indiana, United States

2. Department of Bio-Health Informatics, School of Informatics and Computing, Indiana University – Purdue University Indianapolis, Indianapolis, Indiana, United States

3. Center for Biomedical Informatics, Regenstrief Institute, Indianapolis, Indiana, United States

Abstract

Background Smoking is an established risk factor for oral diseases and, therefore, dental clinicians routinely assess and record their patients' detailed smoking status. Researchers have successfully extracted smoking history from electronic health records (EHRs) using text mining methods. However, they could not retrieve patients' smoking intensity due to its limited availability in the EHR. The presence of detailed smoking information in the electronic dental record (EDR) often under a separate section allows retrieving this information with less preprocessing. Objective To determine patients' detailed smoking status based on smoking intensity from the EDR. Methods First, the authors created a reference standard of 3,296 unique patients’ smoking histories from the EDR that classified patients based on their smoking intensity. Next, they trained three machine learning classifiers (support vector machine, random forest, and naïve Bayes) using the training set (2,176) and evaluated performances on test set (1,120) using precision (P), recall (R), and F-measure (F). Finally, they applied the best classifier to classify smoking status from an additional 3,114 patients’ smoking histories. Results Support vector machine performed best to classify patients into smokers, nonsmokers, and unknowns (P, R, F: 98%); intermittent smoker (P: 95%, R: 98%, F: 96%); past smoker (P, R, F: 89%); light smoker (P, R, F: 87%); smokers with unknown intensity (P: 76%, R: 86%, F: 81%), and intermediate smoker (P: 90%, R: 88%, F: 89%). It performed moderately to differentiate heavy smokers (P: 90%, R: 44%, F: 60%). EDR could be a valuable source for obtaining patients’ detailed smoking information. Conclusion EDR data could serve as a valuable source for obtaining patients' detailed smoking information based on their smoking intensity that may not be readily available in the EHR.

Publisher

Georg Thieme Verlag KG

Subject

Health Information Management,Advanced and Specialized Nursing,Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3