A Broader Look: Camera-Based Vital Sign Estimation across the Spectrum

Author:

Antink Christoph Hoog1,Lyra Simon,Paul Michael1,Yu Xinchi1,Leonhardt Steffen1

Affiliation:

1. Medical Information Technology (MedIT), Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany

Abstract

Objectives: Camera-based vital sign estimation allows the contactless assessment of important physiological parameters. Seminal contributions were made in the 1930s, 1980s, and 2000s, and the speed of development seems ever increasing. In this suivey, we aim to overview the most recent works in this area, describe their common features as well as shortcomings, and highlight interesting “outliers”. Methods: We performed a comprehensive literature research and quantitative analysis of papers published between 2016 and 2018. Quantitative information about the number of subjects, studies with healthy volunteers vs. pathological conditions, public datasets, laboratory vs. real-world works, types of camera, usage of machine learning, and spectral properties of data was extracted. Moreover, a qualitative analysis of illumination used and recent advantages in terms of algorithmic developments was also performed. Results: Since 2016, 116 papers were published on camera-based vital sign estimation and 59% of papers presented results on 20 or fewer subjects. While the average number of participants increased from 15.7 in 2016 to 22.9 in 2018, the vast majority of papers (n=100) were on healthy subjects. Four public datasets were used in 10 publications. We found 27 papers whose application scenario could be considered a real-world use case, such as monitoring during exercise or driving. These include 16 papers that dealt with non-healthy subjects. The majority of papers (n=61) presented results based on visual, red-green-blue (RGB) information, followed by RGB combined with other parts of the electromagnetic spectrum (n=18), and thermography only (n=12), while other works (n=25) used other mono- or polychromatic non-RGB data. Surprisingly, a minority of publications (n=39) made use of consumer-grade equipment. Lighting conditions were primarily uncontrolled or ambient. While some works focused on specialized aspects such as the removal of vital sign information from video streams to protect privacy or the influence of video compression, most algorithmic developments were related to three areas: region of interest selection, tracking, or extraction of a one-dimensional signal. Seven papers used deep learning techniques, 17 papers used other machine learning approaches, and 92 made no explicit use of machine learning. Conclusion: Although some general trends and frequent shortcomings are obvious, the spectrum of publications related to camera-based vital sign estimation is broad. While many creative solutions and unique approaches exist, the lack of standardization hinders comparability of these techniques and of their performance. We believe that sharing algorithms and/ or datasets will alleviate this and would allow the application of newer techniques such as deep learning.

Publisher

Georg Thieme Verlag KG

Subject

General Medicine

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3